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Multispeed thermal models of the lattice Boltzmann method(LBM ) that have a single relaxation[Bhatnagar-
Gross-Krook(BGK)] scheme have been proposed by several authors. While these models are intended to
correctly represent heat characteristics and compressibility, most of them do not provide satisfactory accuracy.
This paper discusses how to construct a correct model. Thermally correct two-dimensional and three-
dimensional multispeed LBM BGK models are proposed. The models are verified by simulations of Couette
flow, evolution from circularly distributed temperature, and normal shock wave. The results show exact agree-
ment with the theoretical predictions. The numerical stability of the model is demonstrated by the simulation
of recovery from a random fluctuation.
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I. INTRODUCTION

In the lattice Boltzmann method(LBM ), there are two
ways of handling thermal fluids. One is the so-called “mul-
ticomponent thermal model”[1], which becomes Boussinesq
model. The other is the so-called “multispeed thermal
model,” where particle velocities that have different speeds
are used. Multispeed thermal model is intended to correctly
represent heat characteristics and compressibility. The recipe
for constructing the multispeed thermal model has been pre-
sented in Ref.[2]. Several authors[3,4] have given a system-
atic description of how to formulate multispeed LBM ther-
mal models. The study[5] also has presented how to obtain
thermohydrodynamics at various levels of accuracy via mul-
tispeed LBM. Some models[6–8] have been proposed.
However, most of them do not give satisfactory accuracy
when applied to numerical simulations. We carefully inves-
tigated whether a correct multispeed LBM Bhatnagar-Gross-
Krook (BGK) thermal model is possible and how to con-
struct it.

II. CONDITIONS LEADING TO FLUID EQUATIONS

Below are the conditions for the local equilibrium distri-
bution function fki

s0d of the multispeed BGK thermal model
for the particle velocitycki to lead to fluid equations[2]. The
symbolr is the density,ua is the velocity, ande is the inter-
nal energy. The subscript symbolk indicates a group of the
particle velocities whose speed isck, andi indicates the par-
ticle velocity’s direction. The subscript symbolsa, b, andg
indicate thex, y, or z component.D is the space dimension:

o
k

o
i

fki
s0d = r, s1d

o
k

o
i

fki
s0dckia = rua, s2d

o
k

o
i

fki
s0dckiackib =

2

D
redab + ruaub, s3d

o
k

o
i

fki
s0dckiackibckig=

2

D
resuadbg + ubdga + ugdabd

+ ruaubug, s4d

o
k

o
i

fki
s0dck

2 = rs2e+ u2d, s5d

o
k

o
i

fki
s0dck

2ckia = ruaF2sD + 2d
D

e+ u2G , s6d

o
k

o
i

fki
s0dck

2ckiackib=
2

D
reF2sD + 2d

D
e+ u2Gdab

+ ruaubF2sD + 4d
D

e+ u2G . s7d

Equations(1)–(3), (5) and(6) are for a nondissipative(Euler)
fluid. Equations(4) and (7) are the requirements for proper
dissipative terms in the momentum and energy equations.
However, since the conditions(5) and(6) can be derived by
contraction from Eqs.(3) and (4), respectively, independent
conditions are Eqs.(1)–(4) and (7).

As Eq.(7) contains up to the fourth order of flow velocity
u, the local equilibrium distribution function should retain up
to the fourth order terms of flow velocity. Consequently, the
local equilibrium distribution function is to contain the
fourth rank tensor. The left-hand side of Eq.(4) contains the
third rank tensor plus the fourth rank tensor in thefki
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contains up to the seventh rank tensor. As a result, the tensors
up to seventh rank should be isotropic.

In the LBM, the particle velocities exactly link the lattice
nodes in unit time. Therefore, regular lattice is used: square
or hexagonal lattice is used in two dimensions and cubic
lattice is used in three dimensions. However, the hexagonal
lattice ensures only up to the fifth rank isotropy, which is
insufficient to derive the correct fluid equations.

The basic particle velocities used in the square lattice and
in the cubic lattice are shown in Fig. 1 and 2, respectively.
The odd rank tensors for these particle velocities vanish: iso-
tropic in regard to the odd rank. The even rank tensors gen-
erally have the following forms[9]:

o
i

1 = pk, s8d

o
i

ckiackib = xkdab, s9d

o
i

ckiackibckigckij = wkDabgj
s4d + ckdabgj, s10d

o
i

ckiackibckigckijckihckiz=ukDabgjhz
s6d + vkDabgjhz

s4,2d + lkdabgjhz,

s11d

o
i

ck
2ckiackibckigckijckihckiz=QkDabgjhz

s6d + VkDabgjhz
s4,2d

+ Lkdabgjhz. s12d

The tensors that appear in the above equations are defined as
follows:

dab = 1 sif a = bd, = 0 sotherwised, s13ad

dabgj = 1 sif a = b = g = jd, = 0 sotherwised,

s13bd

dabgjhz = 1 sif a = b = g = j = h = zd, = 0 sotherwised
s13cd

Dabgj
s4d = dabdgj + dagdbj + dajdbg, s13dd

Dabgjhz
s6d = dabDgjhz

s4d + dagDbjhz
s4d + dajDbghz

s4d + dahDbgjz
s4d

+ dazDbgjh
s4d , s13ed

Dabgjhz
s4,2d =dabdgjhz + dagdbjhz + dajdbghz + dahdbgjz

+ dazdbgjh+ dbgdajhz + dbjdaghz + dbhdagjz

+ dbzdagjh+ dgjdabhz + dghdabjz + dgzdabjh

+ djhdabgz + djzdabgh+ dhzdabgj. s13fd

The tensorsdab, Dabgj
s4d , andDabgjhz

s6d are isotropic, whereas,

the tensorsdabgj, dabgjhz, andDabgjhz
s4,2d are anisotropic. The

specific values of parameters:pk, xk, wk, ck, uk, vk, lk, Qk,
Vk, andLk for the basic particle velocities in Fig. 1 and 2 are
listed in Table I and II, respectively. They are grouped into
groupsck

n depending on the influence of particle speedck.
Note that, if the speeds of particle velocities are doubled, the
values of parameters increase to 2n times of the basic values.

III. MODEL DERIVATION

There seem to be two ways to define the local equilibrium
distribution function. One is to distribute weighting coeffi-
cients on the whole expansion equation. The other is to dis-
tribute weighting coefficients to each power term of the ex-
pansion equation. Both models are discussed.

A. Deriving a model that has global coefficients

This type of local equilibrium distribution function was
adopted by H. Chenet al. [3] and Takadaet al. [8]. The local
equilibrium distribution function that retains up to the fourth

TABLE I. Specific values ofpk, xk, wk, ck, uk, vk, lk, Qk, Vk,
andLk for the basic particle velocities in Fig. 1.

Group Parameter k=1 k=2

ck
0 pk 4 4

ck
2 xk 2 4

ck
4

wk 0 4

ck 2 −8

ck
6

uk 0 4/3

vk 0 0

lk 2 −16

ck
8

Qk 0 8/3

Vk 0 0

Lk 2 −32

FIG. 1. Basic particle velocities used in the square lattice.

FIG. 2. Basic particle velocities used in the cubic lattice.
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order of flow velocity is defined as follows. It is derived by
expanding the Maxwellian distribution regarding flow veloc-
ity. Weighting coefficientsFk are placed on the whole poly-
nomial,

fki
s0d = rFkFS1 −

D

4e
u2 +

D2

32e2u4D+
D

2e
S1 −

D

4e
u2Dckiaua

+
D2

8e2S1 −
D

4e
u2Dckiackibuaub+

D3

48e3ckiackibckiguaubug

+
D4

384e4ckiackibckigckijuaubugujG . s14d

This local equilibrium distribution function is applied to con-
ditions (1)–(4) and(7). Considering that the odd rank tensors
vanish and the even rank tensors are expressed by Eqs.
(8)–(12), equations to determine coefficientsFk are derived.
They are summarized in Table III.

Let us discuss a two-dimensional modelsD=2d. Sincevk

andVk are zeros for bothk=1 andk=2 in Table I, the equa-
tionsovkFk=0 andoVkFk=0 are removed from the require-
ments forFk. Therefore, to satisfy eight independent con-
straints, eight speeds of particle velocities are necessary. A
model using a rest particle and seven groups of moving par-
ticles (four speeds of basic particlesk=1 and three speeds of
basic particlesk=2), as shown in Fig. 3, was constructed.
The coefficientsFk are determined by solving the following
equations:

3
1 4 43 20 4 3 30 4 3 40 4 43 20 4 3 30

0 2 23 22 2 3 32 2 3 42 4 43 22 4 3 32

0 0 03 24 0 3 34 0 3 44 4 43 24 4 3 34

0 2 23 24 2 3 34 2 3 44 − 8 − 83 24 − 8 3 34

0 0 03 26 0 3 36 0 3 46 4/3 4/33 26 4/33 36

0 2 23 26 2 3 36 2 3 46 − 16 − 163 26 − 163 36

0 0 03 28 0 3 38 0 3 48 8/3 8/33 28 8/33 38

0 2 23 28 2 3 38 2 3 48 − 32 − 323 28 − 323 38

43
F0

F11

F12

F13

F14

F21

F22

F23

4 = 3
1

e

e2

0

e3

0

8e4

0

4 . s15d

The results for coefficientsFk are shown in Table IV.
For a three-dimensional modelsD=3d, there are ten inde-

pendent constraints. Ten speeds of particle velocities are nec-
essary. A model using a rest particle and nine groups of mov-
ing particles(four speeds of basic particlesk=1, three speeds
of basic particlesk=2, and two speeds of basic particlesk
=3), was constructed. The results for coefficientsFk are
shown in Table V.

B. Deriving a model that has distributed coefficients

This type of local equilibrium distribution function is used
by Alexanderet al. [6] and Y. Chenet al. [7]. The distribu-
tion function has weighting coefficients:Ak, Mk, Gk, Jk, Qk,
Hk, Sk, Rk, andTk, on each power term,

fki
s0d = rsAk + Mkckiaua + Gku

2 + Jkckiackibuaub+ Qkckiauau2

+ Hkckiackibckiguaubug+ Sku
4 + Rkckiackibuaubu2

+ Tkckiackibckigckijuaubugujd. s16d

This local equilibrium distribution function is applied to con-
ditions (1)–(4) and (7). Considering tensor expressions
(8)–(12), equations to determine weighting coefficients are
derived and are summarized in Table VI.

The numbers of independent constraints for weighting co-
efficients of the two-dimensional model are summarized in
Table VII. The highest number of independent constraints is
four for Jk andRk. Therefore, four different speeds are nec-
essary. Consequently, one-degree arbitrariness exists in de-
termining the coefficientsAk, Mk, Gk, Qk, Hk, andSk. Trivial
solutionTk=0 can be chosen because the right-hand sides of

TABLE II. Specific values ofpk, xk, wk, ck, uk, vk, lk, Qk, Vk,
andLk for the basic particle velocities in Fig. 2.

Group Parameter k=1 k=2 k=3

ck
0 pk 6 12 8

ck
2 xk 2 8 8

ck
4

wk 0 4 8

ck 2 −4 −16

ck
6

uk 0 0 8

vk 0 4 −16

lk 2 −52 128

ck
8

Qk 0 0 24

Vk 0 8 −48

Lk 2 −104 384
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the Tk equations are all zero. This analysis exactly coincides
with the discussion of Ref.[7].

Same procedure will be developed for the three-
dimensional model. Unfortunately there is a mistake in three-
dimensional parameters of Table I of Ref.[7]: (Q11=0, Q21
=8, Q31=0) should be(Q11=0, Q21=0, Q31=8). Therefore,
their three-dimensional model of 3D40V in Table III of Ref.
[7] does not give correct solutions. Actually, we confirmed it
by Couette simulations.

IV. VERIFICATION OF THE PROPOSED MODELS

Thermal models were evaluated by numerical simula-
tions. The simulations were conducted by applying the Euler
and the second upwind finite difference scheme to the fol-
lowing differential equation:

] fki

] t
+ ckia

] fki

] ra

= −
1

f
sfki − fki

s0dd, s17d

where fki is the distribution function for the particle velocity
cki, t is time, ra is the spatial coordinate, andf is the relax-
ation parameter.

The viscous coefficientm, the thermal conductivityk8,
and the pressureP are given as the following equations:

m =
2

D
ref, s18d

k8 =
2sD + 2d

D2 ref, s19d

P =
2

D
re. s20d

The ratio of specific heatsg and the speed of soundc are
expressed as

g =
D + 2

D
, s21d

c =Îg
2

D
e. s22d

TABLE III. Equations for the coefficientsFk for the global co-
efficient model.

Group Equations
ck

0

o
k

pkFk = 1

ck
2

o
k

xkFk =
2

D
e

ck
4

o
k

wkFk =
4

D2e2

o
k

ckFk = 0

ck
6

o
k

ukFk =
8

D3e3

o
k

vkFk = 0

o
k

lkFk = 0

ck
8

o
k

QkFk =
16sD + 6d

D4 e4

o
k

VkFk = 0

o
k

LkFk = 0

TABLE IV. Weighting coefficients for the two-dimensional glo-
bal coefficient model.

Coefficient Value

F0

1−4sF11+F12+F13+F14d

−4sF21+F22+F23d

F11 s−24e4+85e3−106e2+48ed /60

F12 s24e4−80e3+89e2−24ed /240

F13 s−264e4+735e3−574e2+144ed /11 340

F14 s36e4−70e3+49e2−12ed /13 440

F21 s4e4−13e3+12e2d /32

F22 s−4e4+10e3−3e2d /320

F23 s12e4−15e3+4e2d /12 960

FIG. 3. Particle velocities used in the two-dimensional model
proposed in this paper.
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A. Couette flow

Heat characteristics were verified. The upper wall, which
is H apart from the lower wall and has internal energye2,
starts to move at speedU. The lower wall hase1 and is at
rest. Theoretical internal energy distributione along vertical
axis y in a steady state is given as

e= e1 + se2 − e1d
y

H
+

m

2k8
U2 y

H
S1 −

y

H
D . s23d

As the value m /2k8 is constant(=0.25 for the two-
dimensional model and =0.3 for the three-dimensional
model), the distribution does not depend on the relaxation
parameterf. Figure 4 shows the simulation results of the
proposed two-dimensional model for various relaxation pa-
rameters. The result agrees completely with the theoretical
prediction.

Same simulations were conducted using the two-
dimensional models of Ref.[6,7]. The result for the model of
Ref. [6] is shown in Fig. 5. The result shows dependence on
f, which contradicts the theoretical prediction. We think this
contradiction is caused from their model that retains up to
the third order of flow velocity in the equilibrium distribution
function and ensures the isotropy only up to the fifth rank.
The result for the model of Ref.[7], which is shown in Fig.
6, also shows dependence onf, though it is less.

B. Evolution from circularly distributed temperature

The isotropic diffusivity of the proposed two-dimensional
model was verified. Initially, the internal energy inside the
radiusr1 has a higher valuee2 than the valuee1 of the rest of
the region. The density is set as the pressure is kept uniform
P1 over the whole region. As the boundary condition, the

TABLE V. Weighting coefficients for the three-dimensional glo-
bal coefficient model.

Coefficient Value

F0

1−6sF11+F12+F13+F14d

−12sF21+F22+F23d
−8sF31+F32d

F11 s−3878e4+1495e3−19026e2+9072ed /17 010

F12 s518e4−2295e3+3366e2−1296ed /19 440

F13 s−778e4+3045e3−3486e2+1296ed /153 090

F14 s148e4−420e3+441e2−162ed /272 160

F21 s24e4−71e3+54e2d /324

F22 s−42e4+125e3−54e2d /12 960

F23 s8e4−15e3+6e2d /43 740

F31 s−2e4+4e3d /81

F32 s2e4−e3d /5184

TABLE VI. Equations for the coefficientsAk, Mk, Gk, Jk, Qk,
Hk, Sk, Rk, andTk for the distributed coefficient model.

Coefficients Group Equations

Ak

ck
0 o

k

pkAk = 1

ck
2 o

k

xkAk =
2

D
e

ck
4 o

k
fsD + 2dwk + ckgAk =

4sD + 2d
D2 e2

Mk

ck
2 o

k

xkMk = 1

ck
4

o
k

wkMk =
2

D
e

o
k

ckMk = 0

Gk

ck
0 o

k

pkGk = −o
k

xkJk

ck
2 o

k

xkGk = − 1
2

ck
4 o

k

fsD + 2dwk + ckgGk = −
D + 2

D
e

Jk

ck
4

o
k

wkJk = 1
2

o
k

ckJk = 0

ck
6

o
k

fsD + 4duk + 2vkgJk =
D + 4

D
e

o
k

fsD + 8dvk + lkgJk = 0

Qk

ck
2 o

k

xkQk = − 3o
k

wkHk

ck
4

o
k

wkQk = − 1
2

o
k

ckQk = 0
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internal energy and the pressure maintain their initial values
outside the radiusr2. Figure 7 shows a result of contour lines
of the internal energy at some later time. Figure 8 is the
distribution of the internal energy at various times. In the
figure, corresponding Navier-Stokes solutions are also
shown. These figures clearly demonstrate the spatial isotropy
and the accurate diffusivity of the model.

C. Recovery from a random fluctuation

To demonstrate the numerical stability of the proposed
two-dimensional model, this simulation was conducted. Ini-
tially, the internal energy at each node of 50350 is randomly
given in the range of 0.8–1.2. The initial density is given as

TABLE VII. Numbers of independent constraints for weighting
coefficients of the two-dimensional distributed coefficient model.

Coefficient Number of constraints

Ak 3

Mk 3

Gk 3

Jk 4

Qk 3

Hk 3

Sk 3

Rk 4

Tk 3

FIG. 4. Couette flow result for the two-dimensional model pro-
posed in this paper. Internal energy distribution at steady state for
U=0.1 ande1=e2=1.0. The internal energy subtracted by linear
distribution, the last term in Eq.(23), is shown. The relaxation
parameter is changed:f=0.05, 0.1, 0.2, 0.4. The results for allf
overlap each other.

TABLE VI. (Continued.)

Coefficients Group Equations

Hk

ck
4 o

k

ckHk = 0

ck
6

o
k

ukHk = 1
6

o
k

vkHk = 0

o
k

lkHk = 0

Sk

ck
0 o

k

pkSk = −o
k

xkRk − 3o
k

wkTk

ck
2 o

k

xkSk = −o
k

wkRk − 3o
k

ukTk

ck
4

o
k

fsD + 2dwk + ckgSk

=−o
k

fsD + 4duk + 2vkgRk − 3o
k

QkTk

Rk

ck
4

o
k

wkRk = − 6o
k

ukTk

o
k

ckRk = 0

ck
6

o
k

fsD + 4duk + 2vkgRk = − 6o
k

QkTk + 1
2

o
k

fsD + 8dvk + lkgRk = 0

Tk

ck
4 o

k

ckTk = 0

ck
6

o
k

vkTk = 0

o
k

lkTk = 0

ck
8

o
k

VkTk = 0

o
k

LkTk = 0
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the pressure is kept uniform. Figure 9 shows an example of
the evolution of the internal energy distribution. Timewise
variations of the internal energy variance for various relax-
ation parameters are calculated and are shown in Fig. 10. The
results show that the fluctuation decays stably to a homoge-
neous state. In the finite difference LBM scheme, numerical
stability can be secured by adjusting time increment. As the
relaxation parameter becomes smaller, smaller time incre-
ment is needed.

D. Normal shock wave

Compressibility was confirmed by normal shock simula-
tion. The results were compared with theoretical values[10].

The ratios of flow parameters between upstream and down-
stream(suffixed by 1 and 2, respectively) of the shock for
various upstream Mach numbers were compared with the
Rankine-Hugoniot relations in a perfect gas. The result is
shown in Fig. 11. The result exactly agrees with the theory.

When the shock is weak, the pressure variation alongx
axis, normal to the shock, is expressed as the following:

P =
1

2
sP2 + P1d +

1

2
sP2 − P1dtanh

x

d
, s24d

where the origin of positionx is taken atP= 1
2sP2+P1d. The

shock structure obtained in the simulation forM1=1.02 and
f=0.01 is shown in Fig. 12.

FIG. 5. Couette flow result for the model of Ref.[6]. Internal
energy distribution at steady state forU=0.1 ande1=e2=0.5. The
relaxation parameter is changed:f=0.1, 0.2, 0.4. The result shows
dependence onf, which contradicts the analytical prediction.

FIG. 6. Couette flow result for the model of Ref.[7]. Internal
energy distribution at steady state forU=0.1 ande1=e2=0.5. The
relaxation parameter is changed:f=0.05, 0.1, 0.2, 0.4. Although
the model has been improved from the model of Ref.[6], the result
still shows dependence onf.

FIG. 7. Evolution from circularly distributed temperature for
r1=2, r2=7.6, e1=1.0, e2=1.1, P1=1.0, andf=0.1. The contour
lines of the internal energy:e=1.01, 1.02, 1.03, 1.04, 1.05, and 1.06
at t=7.

FIG. 8. Evolution from circularly distributed temperature for the
same condition as Fig. 7. The internal energy distribution att=3, 5,
and 7.
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The thickness of shockd for monatomic perfect gas with
BGK assumption is

d =
8aV

sP2 − P1ds]2V/] P2ds

=
4c

sP2 − P1dsg + 1d
mFS2 −

2

D
D + sg − 1dG , s25d

where V is the specific volumes=1/rd and a is the sonic
absorption parameter. The thicknessd for various relaxation
parameters is shown in Fig. 13. These results exactly agree
with the theory.

E. Three-dimensional model

The proposed three-dimensional model was also verified
by simulations of Couette flow and normal shock wave. The

FIG. 9. Recovery from a random fluctuation forf=0.01. Half
regions of internal energy distribution at(a) t=0.0, (b) t=0.05, and
(c) t=0.1 are shown.

FIG. 10. Recovery from a random fluctuation. The timewise
variances of the internal energy fluctuations for various relaxation
parameters:f=0.01, 0.05, 0.1, 0.2.

FIG. 11. Ratios of flow parameters between upstream and down-
stream of the shock forf=0.002 and various upstream Mach
numbers.

FIG. 12. Normal shock structure forM1=1.02 andf=0.01.

FIG. 13. Thickness of normal shock forM1=1.02. The relax-
ation parameter is changed:f=0.002, 0.005, 0.01, 0.02.
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model demonstrated the complete accuracy and stability as
did the two-dimensional model.

V. CONCLUSIONS

This paper discussed how to construct a correct thermal
model. Thermally correct two-dimensional and three-
dimensional LBM multispeed models that have global coef-

ficients in the local equilibrium distribution function were
proposed. The models were verified by simulations of Cou-
ette flow, evolution from circularly distributed temperature,
and normal shock wave. The results showed exact agreement
with the theoretical predictions. The numerical stability of
the model was demonstrated by simulation of recovery from
a random fluctuation.
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