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Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice
Boltzmann method
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Multispeed thermal models of the lattice Boltzmann mettid8iM ) that have a single relaxatigBhatnagar-
Gross-Krook(BGK)] scheme have been proposed by several authors. While these models are intended to
correctly represent heat characteristics and compressibility, most of them do not provide satisfactory accuracy.
This paper discusses how to construct a correct model. Thermally correct two-dimensional and three-
dimensional multispeed LBM BGK models are proposed. The models are verified by simulations of Couette
flow, evolution from circularly distributed temperature, and normal shock wave. The results show exact agree-
ment with the theoretical predictions. The numerical stability of the model is demonstrated by the simulation

of recovery from a random fluctuation.
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I. INTRODUCTION

In the lattice Boltzmann metho(LBM), there are two

ways of handling thermal fluids. One is the so-called “mul-

ticomponent thermal mode[1], which becomes Boussinesq

model. The other is the so-called “multispeed thermal
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model,” where particle velocities that have different speeds

are used. Multispeed thermal model is intended to correctly
represent heat characteristics and compressibility. The recipe
for constructing the multispeed thermal model has been pre-
sented in Ref[2]. Several authorg3,4] have given a system-
atic description of how to formulate multispeed LBM ther-
mal models. The studfb] also has presented how to obtain
thermohydrodynamics at various levels of accuracy via mul-
tispeed LBM. Some model$6—8] have been proposed.
However, most of them do not give satisfactory accuracy
when applied to numerical simulations. We carefully inves-
tigated whether a correct multispeed LBM Bhatnagar-Gross-
Krook (BGK) thermal model is possible and how to con-
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struct it.

II. CONDITIONS LEADING TO FLUID EQUATIONS

Below are the conditions for the local equilibrium distri-
bution functionff(?) of the multispeed BGK thermal model
for the particle velocityc,; to lead to fluid equationg2]. The
symbolp is the densityy, is the velocity, ance is the inter-
nal energy. The subscript symbllindicates a group of the
particle velocities whose speeddg andi indicates the par-
ticle velocity’s direction. The subscript symbais B, andy
indicate thex, y, or z componentD is the space dimension:

2 210 =p, (1)

*Electronic address: watari.minoru@jaxa.jp

2 2(D+2
S S 0t 2o 20 Zerie o,
K 3 D D
2(D+4
+ puauﬁ[%e+ uz] .

Equationg1)—3), (5) and(6) are for a nondissipativgEulen
fluid. Equations(4) and (7) are the requirements for proper
dissipative terms in the momentum and energy equations.
However, since the conditior{$) and(6) can be derived by
contraction from Eqs(3) and (4), respectively, independent
conditions are Eqg1)—4) and (7).

As Eq.(7) contains up to the fourth order of flow velocity
u, the local equilibrium distribution function should retain up
to the fourth order terms of flow velocity. Consequently, the
local equilibrium distribution function is to contain the
fourth rank tensor. The left-hand side of Eg) contains the
third rank tensor plus the fourth rank tensor in tﬁi’é totally
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k=1 k=2 TABLE I. Specific values ofmy, xx ¢k Yo o © Mo Ok Qe
=1 ¢ =42 and A, for the basic particle velocities in Fig. 1.
Group Parameter k=1 k=2
o i 4 4
c Xk 2 4
FIG. 1. Basic particle velocities used in the square lattice. 4 Pk 0 4
Cx
. /% 2 -8
contains up to the seventh rank tensor. As a result, the tensors
up to seventh rank should be isotropic. bk 0 4/3
In the LBM, the particle velocities exactly link the lattice 8 © 0 0
nodes in unit time. Therefore, regular lattice is used: square k
or hexagonal lattice is used in two dimensions and cubic A 2 16
lattice is used in three dimensions. However, the hexagonal 0, 0 8/3
lattice ensures only up to the fifth rank isotropy, which is 8
insufficient to derive the correct fluid equations. A 5 32
. -

The basic particle velocities used in the square lattice and
in the cubic lattice are shown in Fig. 1 and 2, respectively.
The odd rank tensors for these particle velocities vanish: iso- . .
tropic in regard to the odd rank. The even rank tensors gen- apyene =1 (if a=B=y=¢£=7={), =0 (otherwisg

erally have the following form$9]: (130
zi: L ©® Aye ™ Oupdye* Ouydpe* Buedpy, (13d
> ChiaCkig = XkOap» 9 Ag%ﬂéz aBA(J'A&)ﬂ{'F 5MA(;§)7/£ + 5a§Ag277£+ 500Ag1))'§§
i + 5a§Ag;§n’ (13e)
; ChiaChifChinCkic = Pk e + YkOapye (10) A= BuBrin + OnyOint + OaeOpynt  Candpyec

+ OarOpyen OpyOatnt ¥ OpeOaynt + Opndayer

C.CAc.CACAC.:eA(G) +(1)A(4'2) +)\5 ,
; KB KA A aybnt = BACafybnt = BCafiyent + OprOayent OyeOapni + Oynlaper + OyiOapty

(11) + O¢ndapyc  OetOupyn* OniOapye: (13f)
The tensorss, s, A, , andA®) . are isotropic, whereas,
Z 26, CoiaCuiCuisCri Cui =@, A©) + OAG2 apyé aﬁﬁnzg : .
2 CicCiiaChipChiyCkicChinChic™ VkB apyins + 2 kB agyent the tensorss,g.e Sup,ens and Aa[’,m{ are anisotropic. The
: specific values of parametersi, xi, ¢w Y Go O Mo O
+ N Oupyine- (12 Oy, andA, for the basic particle velocities in Fig. 1 and 2 are
listed in Table | and IlI, respectively. They are grouped into

The tensors that appear in the above equations are deﬁned&%upscﬂ depending on the influence of particle spegd

follows: Note that, if the speeds of particle velocities are doubled, the
S,5=1 (if a=p),=0 (otherwise, (138  values of parameters increase fttitnes of the basic values.
Oupre=1 (f @=p=y=¢),=0 (otherwise, lll. MODEL DERIVATION
(13b)

There seem to be two ways to define the local equilibrium
k=1 k=2 k=3 distribution function. One is to distribute weighting coeffi-
e =1 =2 =3 cients on the whole expansion equation. The other is to dis-

’ ) tribute weighting coefficients to each power term of the ex-
N i pansion equation. Both models are discussed.
. A. Deriving a model that has global coefficients
Iy This type of local equilibrium distribution function was
adopted by H. Chent al.[3] and Takadat al.[8]. The local
FIG. 2. Basic particle velocities used in the cubic lattice. equilibrium distribution function that retains up to the fourth
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TABLE Il. Specific values ofmy, x @k i o @k Mo Ok Qi 0= ( D D? 4) D ( D 2)
i i ities in Fi fii = 1-—u’+ — 1- o
and A, for the basic particle velocities in Fig. 2. de 3262 4 kia!
Group Parameter k=1 k=2 k=3 . D2 (1 D 2) . D3
a2\ + 7 U CiaCiipUalpt — o3 CkiaCkipChiyUalgUy
® me 6 12 8 8"\ de 48e
2 D*
Cy Xk 2 8 8 38424Ck|ack|ﬁck|yck|§u aUpU,Ug | . (14)
y @« 0 4 8
e 2 -4 -16 This local equilibrium distribution function is applied to con-
ditions (1)—<(4) and(7). Considering that the odd rank tensors
O 0 0 8 vanish and the even rank tensors are expressed by Egs.
ct "~ 0 4 16 (8)«(12), equations to determine coefficierig are derived.
N 2 52 128 They are summarized in Table III.
K Let us discuss a two-dimensional modBl=2). Sincew
Oy 0 0 24 and(), are zeros for botlk=1 andk=2 in Table I, the equa-
ct O 0 8 -48 tionsXw, F =0 and=Q,F,=0 are removed from the require-
Ay 2 104 384 ments forF,. Therefore, to satisfy eight independent con-

straints, eight speeds of particle velocities are necessary. A
model using a rest particle and seven groups of moving par-
order of flow velocity is defined as follows. It is derived by ticles(four speeds of basic particlés 1 and three speeds of
expanding the Maxwellian distribution regarding flow veloc- basic particlek=2), as shown in Fig. 3, was constructed.
ity. Weighting coefficientd=, are placed on the whole poly- The coefficientd, are determined by solving the following
nomial, equations:

A4x 20 4x 3P 4x4 4 4x2®  4ax3FP || F 1
2X 22 2x 3% 2X4 4 4x2?2  4x3? ||Fy e
0x2* 0x3* 0x4* 4  4x2* 4x3" ||Fyp e
2x 2% 2x3* 2x4* -8 -8x2% -8x3* [[Fyg 0

83

O O O O O o O -
N O N O DNMNMNODN B

= 15
0x2° 0x3°% 0x4° 4/3 4/3x2° 4/3x3° ||Fyy (19
2x 2% 2x 3% 2x45 -16 -16x2% -16Xx 30 || Fy 0
0x28 0x3% 0x4® 8/3 8/3x2% 8/3x3% ||Fy 8¢’
2x 28 2x3% 2x4% -32 -32x28 -32x 38 || Fy 0
[
The results for coefficients, are shown in Table IV. 19 = p(Ar+ MiCyialy + GU? + I CriuCii SUaUgH QuCrinll U2

For a three-dimensional modéD =3), there are ten inde-
pendent constraints. Ten speeds of particle velocities are nec-
essary. A model using a rest particle and nine groups of mov- *+ TiChiaCrisCii CrigUalgu ) - (16)
ing particlegfour speeds of basic particlés 1, three speeds
of basic particlek=2, and two speeds of basic particles
=3), was constructed. The results for coefficiefits are
shown in Table V.

4 2
+ HiCriaCrigCiiyUalgU,+ SU™ + RiCiiaCrigUaUgu

This local equilibrium distribution function is applied to con-
ditions (1)«4) and (7). Considering tensor expressions
(8)«12), equations to determine weighting coefficients are
derived and are summarized in Table VI.
The numbers of independent constraints for weighting co-
B. Deriving a model that has distributed coefficients efficients of the two-dimensional model are summarized in
Table VII. The highest number of independent constraints is
This type of local equilibrium distribution function is used four for J, and R,. Therefore, four different speeds are nec-
by Alexanderet al. [6] and Y. Cheret al. [7]. The distribu- essary. Consequently, one-degree arbitrariness exists in de-
tion function has weighting coefficientsy, M, G, J, Qx,  termining the coefficientdy, M\, Gy, Q, Hy, andS,. Trivial
Hy, So R, andT,, on each power term, solutionT,=0 can be chosen because the right-hand sides of
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TABLE Ill. Equations for the coefficient&, for the global co- =13 k=14

efficient model. k=12 =3 a4
k=11 cr =2
k=0 =1
Group Equations =0
0
% 2 mF=1 * 4%’
k
G 2 § =21 k=22 E=23
% Xka: Be c:: \/5 o =21/§ C =31/5
4
> aF= = :><:
" D? >< ><
Ck
2 hwF=0 FIG. 3. Particle velocities used in the two-dimensional model
k proposed in this paper.
8 . - L.
2 eka=§e3 The viscous coefficieng, the thermal conductivityk’,
k and the pressurB are given as the following equations:
6 > oF=0 w= EpeqS (18
Cy k D"
> MFe=0 ,_2(D+2)
K KK K = Tped), (19
16(D+6
> OF= #e" 2
k D P=—pe. (20)
D
s > OF=0 The ratio of specific heaty and the speed of sourdare
Ck k expressed as
D+2
> AF=0 y= , (22
k D
_ 2
the Ty equations are all zero. This analysis exactly coincides €= 7’59- (22)

with the discussion of Ref.7].
Same procedure will be deve|0ped for the three- TABLE IV. Weighting coefficients for the two-dimensional glO-

dimensional model. Unfortunately there is a mistake in threebal coefficient model.

dimensional parameters of Table | of REf]: (0,,=0, O,

=8, 03,=0) should be(®,,=0, ©,,=0, O4,=8). Therefore, Coefficient Value
their three-dimensional model of 3D40V in Table Il of Ref. 1= 4(F 1+ F 1yt Fia+Fra)
[7] does not give correct solutions. Actually, we confirmed it Fo nrrizT st
by Couette simulations. —4(F 1 +Fp+Fpg)
IV. VERIFICATION OF THE PROPOSED MODELS Fiq (—24e*+85e3- 10622+ 480) /60
~ Thermal models were evaluated by numerical simula- Fi (246 - 8063+ 8962~ 24e) | 240
tions. The simulations were conducted by applying the Euler
and the second upwind finite difference scheme to the fol- Fis (-264e*+735%3-574?+144e)/ 11 340
lowing differential equation:
g a Fis (36e*-70e3+ 497 120)/ 13 440
d fki Jd fki 1 (0)
Ty kiao.,_ra == ;(fki —fii)s (17) Foy (4e*—1363+1262)/32
Fao (—4e*+10e3-3¢?)/320

wheref,; is the distribution function for the particle velocity
C, tis time,r, is the spatial coordinate, anflis the relax-
ation parameter.

Fas (12e*-15e3+4€?) /12 960
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TABLE V. Weighting coefficients for the three-dimensional glo- TABLE VI. Equations for the coefficientgy, My, Gy, Jx, Q.

bal coefficient model. Hy, S R, andTy for the distributed coefficient model.
Coefficient Value Coefficients Group Equations
1-6(F1+Fip+Fi3tF1s) S mA=1
0 K%
Fo ~12Fp1+Fpot+Fag) % k
~8(F31+F3)
S b= 2
Fip (—-3878&*+ 14953~ 190262+9072)/17 010 Ac 2 - A= e
Fip (518%-229%3+ 336622~ 12962) /19 440
4D+2)
Fis (7784 +3045%3- 34862+ 1296/ 153 090 ¢t Ek: [(D+ 2@+ thdA=—"12 &
Fis (148e*- 42023+ 4416~ 162) /272 160
Fay (246~ 7163+ 54¢?) | 324 2 % aM=1
Fao (-42e*+1253-54e?) /12 960 5
Faa (86— 1563+ 662) /43 740 M, Ek“ o= e
Fay (-2e*+4e%)/81 c
Fap (26*-€)/5184 Ek" M= 0
A. Couette flow & > mG== 2 xik
k k k
Heat characteristics were verified. The upper wall, which
is H apart from the lower wall and has internal eneggy S Ge=-1
starts to move at spedd. The lower wall hase; and is at G 2 — XK= "2
rest. Theoretical internal energy distributieralong vertical
axisy in a steady state is given as D+2
s 2[D+ec+ hlG=-——"¢
e=g + (e —e)X+LU2X(1—1) (23) “ “ °
R 2T HAT O H)T
-1
As the value u/2«’ is constant(=0.25 for the two- % Pk 3
dimensional model and =0.3 for the three-dimensional .
mode), the distribution does not depend on the relaxation Ck
parameter¢. Figure 4 shows the simulation results of the 2 k=0
proposed two-dimensional model for various relaxation pa- K
rameters. The result agrees completely with the theoretical J D14
prediction. > (D +4) 6+ 20, = e
Same simulations were conducted using the two- k D
dimensional models of Reff6,7]. The result for the model of ¢
Ref. [6] is shown in Fig. 5. The result shows dependence on S (D + 9w+ MI=0
¢, which contradicts the theoretical prediction. We think this ”

contradiction is caused from their model that retains up to
the third order of flow velocity in the equilibrium distribution
function and ensures the isotropy only up to the fifth rank. 2
The result for the model of Ref7], which is shown in Fig.
6, also shows dependence @nthough it is less.

D xQe=-32 et
k K

> aQ=-3
. _ - Q k
B. Evolution from circularly distributed temperature 4
C
The isotropic diffusivity of the proposed two-dimensional “ > h Q=0
model was verified. Initially, the internal energy inside the k

radiusr, has a higher value, than the value; of the rest of
the region. The density is set as the pressure is kept uniform
P, over the whole region. As the boundary condition, the
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TABLE VI. (Continued)

Coefficients Group Equations
> hH=0
Cﬁ K
> OH=¢
k
Hy
6 > oH=0
Cy K
D MH =0
k
0 > &=~ 2 xR 32 ol
Cx k k k
, 2SR 3D AT,
Cy k K k
S
DD+ 2q+ Sk
K
o
== 2 [(D+4)f+ 20 ]R— 32, OTi
K K
2 oRe=— 62 BTy
K K
o
> UR=0
K
Ry
DD+ + 20 ]R =~ 62®ka+%
K K
o
2 [(D+8)ax+ NJR=0
K
> %I =0
Cﬁ K
> T =0
K
o
2 )\ka: 0
Tk K
> OT=0
K
o
> AT =0
K

PHYSICAL REVIEW E 70, 016703(2004

TABLE VII. Numbers of independent constraints for weighting
coefficients of the two-dimensional distributed coefficient model.

Coefficient Number of constraints

Ay 3
My

3
3
4
3
3
3
4
3

internal energy and the pressure maintain their initial values
outside the radius,. Figure 7 shows a result of contour lines
of the internal energy at some later time. Figure 8 is the
distribution of the internal energy at various times. In the
figure, corresponding Navier-Stokes solutions are also
shown. These figures clearly demonstrate the spatial isotropy
and the accurate diffusivity of the model.

C. Recovery from a random fluctuation

To demonstrate the numerical stability of the proposed
two-dimensional model, this simulation was conducted. Ini-
tially, the internal energy at each node o660 is randomly
given in the range of 0.8—1.2. The initial density is given as

g 0.0008 .

5 Watari et.al.

£

E

2

§ 0.0006 |- -
=

=

e

o

£ 0.0004f .
<

£ o ¢$=0.05

2 A ¢=0.1

&3 0.0002 | o ¢=02 §
g o ¢=04

= — Analysis

=

2 , ¥
=

= 0.0b 0.5 1.0

Vertical position y/H

FIG. 4. Couette flow result for the two-dimensional model pro-
posed in this paper. Internal energy distribution at steady state for
U=0.1 ande;=e,=1.0. The internal energy subtracted by linear
distribution, the last term in Eq23), is shown. The relaxation
parameter is changed=0.05, 0.1, 0.2, 0.4. The results for afl
overlap each other.
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= 0.0010
-2 Alexander et al.
=
= a ©
Z 0.0008 | . .
;a =]
]
£ 2 s
2 0.0006 -
o
2
Q
£
-‘é 0.0004 o 7|
? o ¢=0.1
= a ¢=02
© 0.0002 - n
= o ¢=04
E) — Analysis
=
d 1

0.0 0.5 1.0
Vertical position y/H

FIG. 5. Couette flow result for the model of R¢€]. Internal

—
energy distribution at steady state fd=0.1 ande;=e,=0.5. The 1.00 1.10
relaxation parameter is changeti=0.1, 0.2, 0.4. The result shows
dependence om, which contradicts the analytical prediction.

FIG. 7. Evolution from circularly distributed temperature for
r=2,r,=7.6,e,=1.0,e=1.1, P;=1.0, and¢=0.1. The contour
the pressure is kept uniform. Figure 9 shows an example dines of the internal energg=1.01, 1.02, 1.03, 1.04, 1.05, and 1.06
the evolution of the internal energy distribution. Timewise att=7.
variations of the internal energy variance for various relax-
ation parameters are calculated and are shown in Fig. 10. Thkhe ratios of flow parameters between upstream and down-
results show that the fluctuation decays stably to a homogestream(suffixed by 1 and 2, respectivelypf the shock for
neous state. In the finite difference LBM scheme, numericavarious upstream Mach numbers were compared with the
stability can be secured by adjusting time increment. As th&Rankine-Hugoniot relations in a perfect gas. The result is
relaxation parameter becomes smaller, smaller time increshown in Fig. 11. The result exactly agrees with the theory.
ment is needed. When the shock is weak, the pressure variation abkong

axis, normal to the shock, is expressed as the following:
D. Normal shock wave
Compressibility was confirmed by normal shock simula-

1 1 X
. : . P==(P,+P,;) +=(P, - Ptanh- 24
tion. The results were compared with theoretical value. 2( 2+ Py 2( 2~ Pytan s (24

§ 0.0008 l where the origin of positiox is taken atP=2(P,+P;). The
-] Chen et al. : . . .2

2 shock structure obtained in the simulation fdf=1.02 and
5 ¢=0.01 is shown in Fig. 12.

T 0.0006 - -

g 1.15 T T T T T

= 1 2 Rk e Initial distribution

2 0 LBMsim. t=3

=]

3 0.0004 | . | o =5 s i 4
: B0 A 7!

~— () . '

_g =005 § — N.S. solution 5

<

8 L a ¢=01 ] £1.05+

: 0.0002 o =02 5

9 o ¢=04 =

g —— Analysis 1.00G

2 d 1

=00 0.5 1.0

Vertical position y/H 0.95 | | |
T8 6 2 0 2

FIG. 6. Couette flow result for the model of R¢¥]. Internal Radial position

energy distribution at steady state fd=0.1 ande;=e,=0.5. The
relaxation parameter is changedi=0.05, 0.1, 0.2, 0.4. Although
the model has been improved from the model of R&}. the result

still shows dependence ap

FIG. 8. Evolution from circularly distributed temperature for the
same condition as Fig. 7. The internal energy distributior=&, 5,

and 7.
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2 1 I
— Theory
O Pressure P2/P
1.8 =
O Int. energye2/ e1
4 + Density p2/p:
E 16_ [o) M2 -
Q S 14
2
¢ 12
=]
2
§ 1
//f“ 0.8
(@)t=00 =, (b)t=0.05 (c) =0.10 . . .
@ ®) 0'61 1.1 1.2 1.3
FIG. 9. Recovery from a random fluctuation f@=0.01. Half Upstream Mach M,

regions of internal energy distribution @) t=0.0, (b) t=0.05, and

(c) t=0.1 are shown. FIG. 11. Ratios of flow parameters between upstream and down-

stream of the shock fopy=0.002 and various upstream Mach
numbers.

The thickness of shocE for monatomic perfect gas with
BGK assumption is

5= 8aV
T (P, - Py)(PVIaP?)
4c
:<P2—P1><y+1>“{<2'o>”y'”] @3

whereV is the specific volumd&=1/p) and a is the sonic
absorption parameter. The thickne®or various relaxation
parameters is shown in Fig. 13. These results exactly agree
with the theory.

E. Three-dimensional model

The proposed three-dimensional model was also verified
by simulations of Couette flow and normal shock wave. The

1072 =
5 B o,
=] (o]
21077 ﬁ %o oo i
A O fo)
é mEAA 00000000
4
@10 " fgsa ]
Q +n AA
5 +o A,
3107 - t¥o LY Y
g + 0 A
: i
'c.a 106 o ¢=0.01 + :l_ a |
8 A ¢=0.05 .|.|:|I:|I:|
g o ¢=0.1 te ©
";>§10 -+ ¢=02 +
-8 | | | |
1075 2 4 6 8 10

Time normalized by relaxation parameter

FIG. 10. Recovery from a random fluctuation. The timewise
variances of the internal energy fluctuations for various relaxation
parameters$=0.01, 0.05, 0.1, 0.2.
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Pressure, Density, Int.energy, Mach

FIG.

Normal shock thickness

FIG. 13. Thickness of normal shock foéf,=1.02. The relax-
ation parameter is change@=0.002, 0.005, 0.01, 0.02.
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model demonstrated the complete accuracy and stability dg&ients in the local equilibrium distribution function were

did the two-dimensional model. proposed. The models were verified by simulations of Cou-
ette flow, evolution from circularly distributed temperature,
V. CONCLUSIONS and normal shock wave. The results showed exact agreement

with the theoretical predictions. The numerical stability of

This paper discussed how to construct a correct therme{he model was demonstrated by simulation of recovery from
model. Thermally correct two-dimensional and three- .
a random fluctuation.

dimensional LBM multispeed models that have global coef-
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